本文目录一览:
光电仪器结构设计
端窗式光电倍增管是通过管壳顶部接受入射光,其对应的阴极结构形式通常为透射式(半透明)光阴极,在石油测井中通常使用这种类型光电倍增管。
分压器的设计应根据对光电倍增管的要求(最佳信噪比、高增益、大电流输出等)来考虑。光电倍增管的分压器可细分为三个部分:前级(阴极—第一倍增极)、中间级、末级,如图4-3-10所示。(1)阴极—第一倍增极。
仪器结构简单,操作方便。缺点是散射光的影响大。检测器:常用的是光电倍增管,在多元素原子荧光分析仪中,也用光导摄象管、析象管做检测器。检测器与激发光束成直 角配置,以避免激发光源对检测原子荧光信号的影响。
元器件科普:光电耦合器的应用及分类
1、常用光电耦合器有4种类型:普通型应用广泛高速型采用光敏二极管和高速开关管复合结构,既有高响应速度,又保持较高的电流传输比。
2、光电耦合器用得太多,是时候总结一下了。仅以个人应用为出发点。光耦分类 分两类:非线性光耦和线性光耦。非线性光耦:适合于开关信号的传输(高低电平),不适合于传输模拟量。实际中常用。
3、光电耦合器的种类较多,常见有光电二极管型、光电三极管型、光敏电阻型、光控晶闸管型、光电达林顿型、集成电路型等。
基于二维纳米线的光电器件
近日,来自澳大利亚墨尔本大学的研究人员在Nanophotonics上以 Nanowires for 2D material-based photonic and optoelectronic devices 为题发表综述文章,系统综述了近年来各种纳米线在光电子学和光电子学中的应用,以及纳米线与二维材料的结合。
用纳米级光电导或光电器件进行检测具有相对较差的灵敏度,因此需要大的放大倍数才能检测弱光并最终检测单个光子。一维纳米线雪崩光电二极管具有超高的灵敏度,检测极限小于100个光子,可重现的高倍增倍数高达7 104。
2 纳米技术在微电子学上的应用 纳米电子学是纳米技术的重要组成部分,其主要思想是基于纳米粒子的量子效应来设计并制备纳米量子器件,它包括纳米有序(无序)阵列体系、纳米微粒与微孔固体组装体系、纳米超结构组装体系。
手性纳米光子界面Chiral nanophotonic interfaces,能够实现导向光学模式和圆形二向色材料之间传播方向相关的相互作用。界面手性的电调谐,将有助于片上光电和光子电路主动、可切换非互易性,但仍然极具挑战。
基于石墨烯的 LiNbO 3(体)光电探测器显示出高响应度,基于石墨烯的 LiNbO 3(薄膜)光电探测器具有快速响应时间。 二维材料和铁电材料的结合是下一代高性能光电器件的一个有吸引力的研究领域。